Javascript required
Skip to content Skip to sidebar Skip to footer

Review of Invasive Species in the Great Lakes

Abstract

The Laurentian Great Lakes are subject field to numerous anthropogenic perturbations, among which invasive species are notable. Sequential invasions of non-indigenous species have had profound effects within the basin's ecosystems. Invasive species have altered ecosystem functioning, trophic dynamics, and nutrient cycling. They take similarly been implicated in affecting contaminant dynamics, including their transport and bioaccumulation. This work is a regional synthesis of aquatic invasive species-induced changes to ecosystem functioning in the Slap-up Lakes and their tributaries. We have highlighted several species whose impacts on legacy contaminant, nutrient, and food spider web dynamics in these lakes have been particularly potent. Profiled species included filter feeders [zebra mussels (Dreissena polymorpha) and quagga mussels (D. rostriformis bugensis)], a fish [circular goby (Neogobius melanostomus)], and two invasive plants [mutual reed (Phragmites australis) and cattail (Typha spp.)]. Collectively, these species showcase invasive species' ecosystem-wide effects. The Peachy Lakes have a long invasion history. Despite extensive research efforts, complex food web interactions and synergies between invasive species and concomitant stressors can obscure causality. These interactions underscore the need for long-term, spatially resolved studies to understand invasive species' direct and indirect effects on invaded ecosystems.

Keywords

  • Contaminant
  • Food web
  • Touch
  • Invasive species
  • Laurentian Great Lakes

References

  1. Allan JD, McIntyre Lead, Smith SDP, Halpern BS, Boyer GL, Buchsbaum A, Burton Jr GA, Campbell LM, Chadderton WL, Ciborowski JJH, Doran PJ, Eder T, Infante DM, Johnson LB, Joseph CA, Marino AL, Prusevich A, Read JG, Rose JB, Rutherford ES, Sowa SP, Steinman Advertising (2013) Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc Natl Acad Sci U Southward A 110:372–377. https://doi.org/10.1073/pnas.1213841110

    CrossRef  Google Scholar

  2. Smith SDP, Bunnell DB, Burton Jr GA, Ciborowski JJH, Davidson AD, Dickinson CE, Eaton LA, Esselman PC, Evans MA, Kashian DR, Manning NF, McIntyre PB, Nalepa TF, Pérez-Fuentetaja A, Steinman AD, Uzarski DG, Allan JD (2019) Evidence for interactions among ecology stressors in the Laurentian Great Lakes. Ecol Indic 101:203–211. https://doi.org/10.1016/j.ecolind.2019.01.010

    CrossRef  Google Scholar

  3. Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282. https://doi.org/10.1890/13-0183.one

    CrossRef  Google Scholar

  4. Environment and Climate Change Canada (ECCC), U.S. Environmental Protection Agency (EPA) (2017) Land of the Great Lakes 2017 Technical Written report. Cat No. En161-3/1E-PDF. EPA 905-R-17-001

    Google Scholar

  5. Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Slap-up Lakes by Ponto–Caspian species. Trends Ecol Evol 15:62–65. https://doi.org/ten.1016/S0169-5347(99)01745-0

    CAS  CrossRef  Google Scholar

  6. Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Defined Distrib 12:425–433. https://doi.org/10.1111/j.1366-9516.2006.00262.ten

    CrossRef  Google Scholar

  7. Rothlisberger JD, Finnoff DC, Cooke RM, Lodge DM (2012) Ship-borne nonindigenous species diminish Great Lakes ecosystem services. Ecosystems 15:462–476. https://doi.org/10.1007/s1002

    CrossRef  Google Scholar

  8. Drake JM, Lodge DM (2007) Charge per unit of species introductions in the nifty lakes via ships' ballast water and sediments. Can J Fish Aquat Sci 64:530–538

    CrossRef  Google Scholar

  9. Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Slap-up Lakes? Tin can J Fish Aquat Sci 58:2513–2525. https://doi.org/x.1139/f01-178

    CrossRef  Google Scholar

  10. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. https://doi.org/ten.1023/A:1010086329619

    CrossRef  Google Scholar

  11. Ricciardi A, MacIsaac HJ (2011) Impacts of biological invasions on freshwater ecosystems. In: Richardson DM (ed) 50 years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Due west Sussex

    Google Scholar

  12. MacIsaac HJ, Johansson ML (2017) Higher colonization pressure increases the risk of sustaining invasion by invasive non-ethnic species. Aquat Ecosyst Wellness twenty:378–383. https://doi.org/ten.1080/14634988.2017.1393299

    CrossRef  Google Scholar

  13. Sturtevant RA, Stonemason DM, Rutherford ES, Elgin A, Lower E, Martinez F (2019) Contempo history of nonindigenous species in the Laurentian Great Lakes; an update to Mills et al., 1993 (25 years later). J Peachy Lakes Res 45:1011–1035. https://doi.org/x.1016/j.jglr.2019.09.002

    CrossRef  Google Scholar

  14. Madenjian CP, Bunnell DB, Warner DM, Pothoven SA, Fahnenstiel GL, Nalepa TF, Vanderploeg HA, Tsehaye I, Claramunt RM, Clark Jr RD (2015) Changes in the Lake Michigan food web following dreissenid mussel invasions: a synthesis. J Nifty Lakes Res 41(Suppl iii):217–231. https://doi.org/10.1016/j.jglr.2015.08.009

    CrossRef  Google Scholar

  15. Pérez-Fuentetaja A, Mackintosh SA, Zimmerman LR, Clapsadl Doc, Alaee Yard, Aga DS (2015) Trophic transfer of flame retardants (PBDEs) in the nutrient web of Lake Erie. Can J Fish Aquat Sci 72:1886–1896. https://doi.org/10.1139/cjfas-2015-0088

    CAS  CrossRef  Google Scholar

  16. Crane DP, Einhouse DW (2016) Changes in growth and diet of smallmouth bass following invasion of Lake Erie past the round goby. J Keen Lakes Res 42:405–412. https://doi.org/10.1016/j.jglr.2015.12.005

    CrossRef  Google Scholar

  17. Turschak BA, Bunnell D, Czesny South, Höök TO, Janssen J, Warner D, Bootsma HA (2014) Nearshore energy subsidies support Lake Michigan fishes and invertebrates post-obit major changes in food web construction. Ecology 95:1243–1252. https://doi.org/ten.1890/13-0329.1

    CrossRef  Google Scholar

  18. Walsh JR, Carpenter SR, Vander Zanden MJ (2016) Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc Natl Acad Sci U Due south A 113:201600366. https://doi.org/x.1073/pnas.1600366113

    CAS  CrossRef  Google Scholar

  19. Ives JT, McMeans BC, McCann KS, Fisk AT, Johnson TB, Bunnell DB, Frank KT, Muir AM (2019) Food web construction and ecosystem role in the Laurentian Slap-up Lakes – toward a conceptual model. Freshw Biol 64:i–23. https://doi.org/ten.1111/fwb.13203

    CrossRef  Google Scholar

  20. IJC (1972) Great Lakes water quality agreement with annexes and texts and terms of reference, between the United States and Canada, signed at Ottawa, April 15,1972. International Articulation Commission, Windsor, ON

    Google Scholar

  21. Maccoux MJ, Dove A, Backus SM, Dolan DM (2016) Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country and tributary. J Bang-up Lakes Res 42:1151–1165. https://doi.org/x.1016/j.jglr.2016.08.005

    CAS  CrossRef  Google Scholar

  22. Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ, Dolan DM, Brenden TO, Briland R, Gorman OT, He JX, Johengen TH, Lantry BF, Lesht BM, Nalepa TF, Riley SC, Riseng CM, Treska TJ, Tsehaye I, Walsh MG, Warner DM, Weidel BC (2014) Changing ecosystem dynamics in the Laurentian Great Lakes: lesser-up and top-downwards regulation. Bioscience 64:26–39. https://doi.org/10.1093/biosci/bit001

    CrossRef  Google Scholar

  23. Gandhi North, Tang RW, Bhavsar SP, Arhonditsis GB (2014) Fish mercury levels appear to be increasing lately: a report from twoscore years of monitoring in the province of Ontario, Canada. Environ Sci Technol 48:5404–5414. https://doi.org/10.1021/es403651x

    CAS  CrossRef  Google Scholar

  24. Blukacz-Richards EA, Visha A, Graham ML, McGoldrick DL, de Solla SR, Moore DJ, Arhonditsis GB (2017) Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes. Chemosphere 172:476–487. https://doi.org/10.1016/j.chemosphere.2016.12.148

    CAS  CrossRef  Google Scholar

  25. Zhou C, Cohen Dr., Crimmins BA, Zhou H, Johnson TA, Hopke PK, Holsen TM (2017) Mercury temporal trends in meridian predator fish of the Laurentian Bang-up Lakes from 2004 to 2015: are concentrations still decreasing? Environ Sci Technol 51:7386–7394. https://doi.org/ten.1021/acs.est.7b00982

    CAS  CrossRef  Google Scholar

  26. Visha A, Gandhi North, Bhavsar SP, Arhonditsis GB (2016) Guiding fish consumption advisories for Lake Ontario: a Bayesian hierarchical approach. J Great Lakes Res 42:70–82. https://doi.org/x.1016/j.jglr.2015.11.005

    CAS  CrossRef  Google Scholar

  27. Omara M, Crimmins BS, Back RC, Hopke PK, Chang FC, Holsen TM (2015) Mercury biomagnification and contemporary food web dynamics in lakes superior and Huron. J Great Lakes Res 41:473–483. https://doi.org/10.1016/j.jglr.2015.02.005

    CAS  CrossRef  Google Scholar

  28. Dove A, L'Italien Southward, Gilroy D (2009) Great Lakes surveillance program field methods manual. Water quality monitoring and surveillance. Environs Canada, Burlington, Ontario, Canada. Report No. WQMS09-001

    Google Scholar

  29. McGoldrick DJ, Clark MG, Keir MJ, Backus SM, Malecki MM (2010) Canada'southward national aquatic biological specimen bank and database. J Great Lakes Res 36:393–398. https://doi.org/10.1016/j.jglr.2010.02.011

    CrossRef  Google Scholar

  30. Gewurtz SB, Backus SM, Bhavsar SP, McGoldrick DJ, de Solla SR, Murphy EW (2011) Contaminant biomonitoring programs in the Neat Lakes region: review of approaches and critical factors. Environ Rev 19:162e184. https://doi.org/ten.1139/a11-005

    CAS  CrossRef  Google Scholar

  31. Cornwell ER, Goyette JO, Sorichetti RJ, Allan DJ, Kashian DR, Sibley PK, Taylor WD, Play tricks CG (2015) Biological and chemic contaminants as drivers of change in the Keen Lakes–St. Lawrence river basin. J Smashing Lakes Res 41:119–130. https://doi.org/10.1016/j.jglr.2014.11.003

    CAS  CrossRef  Google Scholar

  32. Dolan DM, Chapra SC (2012) Great Lakes full phosphorus revisited: 1. Loading analysis and update (1994–2008). J Bully Lakes Res 38:730–740. https://doi.org/10.1016/j.jglr.2012.10.001

    CAS  CrossRef  Google Scholar

  33. Mckindles One thousand, Frenken T, McKay RM, Bullerjahn GS (2020) Binational efforts addressing cyanobacterial harmful algal blooms in the Swell Lakes. In: Crossman J, Weisener C (eds) Contaminants of the Great Lakes. The handbook of environmental chemistry, vol 30. Springer, Berlin

    Google Scholar

  34. Carlton JT (2008) The zebra mussel Dreissena polymorpha establish in North America in 1986 and 1987. J Great Lakes Res 34:770–773. https://doi.org/10.3394/0380-1330-34.4.770

    CrossRef  Google Scholar

  35. May B, Marsden JE (1992) Genetic identification and implications of another invasive species of dreissenid mussel in the Slap-up Lakes. Tin can J Fish Aquat Sci 49:1501–1506. https://doi.org/10.1139/f92-166

    CrossRef  Google Scholar

  36. Smith SDP, McIntyre Atomic number 82, Halpern BS, Cooke RM, Marino AL, Boyer GL, Buchsbaum A, Burton Jr GA, Campbell LM, Ciborowski JJH, Doran PJ, Infante DM, Johnson LB, Read JG, Rose JB, Rutherford ES, Steinman Advertisement, Allan JD (2015) Rating impacts in a multi-stressor earth: a quantitative assessment of l stressors affecting the Swell Lakes. Ecol Appl 25:717–728. https://doi.org/x.1890/14-0366.i

    CrossRef  Google Scholar

  37. Hecky RE, Smith RE, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a event of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293. https://doi.org/10.1139/F04-065

    CAS  CrossRef  Google Scholar

  38. Engevold PM, Immature EB, Sandgren CD, Berges JA (2015) Pressure from top and bottom: lower food web responses to changes in nutrient cycling and invasive species in western Lake Michigan. J Great Lakes Res 41(Supplement 3):86–94. https://doi.org/x.1016/j.jglr.2015.04.015

    CAS  CrossRef  Google Scholar

  39. Mosley CM, Bootsma HA (2015) Phosphorus cycling and grazing by profunda quagga mussels in Lake Michigan. J Keen Lakes Res 41:38–48. https://doi.org/10.1016/j.jglr.2015.07.007

    CAS  CrossRef  Google Scholar

  40. Rowe MD, Anderson EJ, Vanderploeg HA, Pothoven SA, Elgin AK, Wang J, Yousef F (2017) Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: a biophysical modeling study. Limnol Oceanogr 62:2629–2649. https://doi.org/x.1002/lno.10595

    CrossRef  Google Scholar

  41. Barbiero RP, Lesht BM, Warren GJ, Rudstam LG, Watkins JM, Reavie ED, Kovalenko KE, Karatayev AY (2018) A comparative examination of recent changes in nutrients and lower food spider web construction in Lake Michigan and Lake Huron. J Great Lakes Res 44:573–589. https://doi.org/10.1016/j.jglr.2018.05.012

    CAS  CrossRef  Google Scholar

  42. Ozersky T, Evans Practice, Ginn BK (2015) Invasive mussels modify the cycling, storage and distribution of nutrients and carbon in a large lake. Freshw Biol 60:827–843. https://doi.org/10.1111/fwb.12537

    CAS  CrossRef  Google Scholar

  43. Stadig MH, Collingsworth PD, Lesht BM, Höök TO (2019) Spatially heterogeneous trends in nearshore and offshore chlorophyll a concentrations in lakes Michigan and Huron (1998–2013). Freshwater Biol. https://doi.org/10.1111/fwb.13430

  44. Rowe MD, Obenour DR, Nalepa TF, Vanderploeg HA, Yousef F, Kerfoot WC (2015) Mapping the spatial distribution of the biomass and filter-feeding event of invasive dreissenid mussels on the wintertime-spring phytoplankton blossom in Lake Michigan. Freshw Biol 60:2270–2285. https://doi.org/ten.1111/fwb.12653

    CAS  CrossRef  Google Scholar

  45. Shimoda Y, Watson SB, Palmer ME, Koops MA, Mugalingam South, Morley A, Arhonditsis GB (2016) Delineation of the function of nutrient variability and dreissenids (Mollusca, Bivalvia) on phytoplankton dynamics in the Bay of Quinte, Ontario, Canada. Harmful Algae 55:121–136. https://doi.org/10.1016/j.hal.2016.02.005

    CAS  CrossRef  Google Scholar

  46. Yousef F, Kerfoot WC, Shuchman R, Fahnenstiel Thou (2014) Bio-optical properties and primary production of Lake Michigan: insights from 13-years of SeaWiFS imagery. J Great Lakes Res 40:317–324. https://doi.org/10.1016/j.jglr.2014.02.018

    CrossRef  Google Scholar

  47. Ransibrahmanakul V, Pittmam SJ, Pirhalla DE, Sheridan SC, Cameron CL, Barnes BB, Hu C, Shein One thousand (2018) Linking atmospheric condition patterns, h2o quality and invasive mussel distributions in the development and application of a water clarity alphabetize for the Slap-up Lakes. In: 2018 IEEE international geoscience and remote sensing symposium, Feria Valencia, Spain, 22–27 July 2018

    Google Scholar

  48. Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ (2014) Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J Dandy Lakes Res 40:502–517. https://doi.org/x.1016/j.jglr.2014.05.001

    CAS  CrossRef  Google Scholar

  49. Schmidt SN, Olden JD, Solomon CT, Vander Zanden MJ (2007) Quantitative approaches to the analysis of stable isotope food web information. Ecology 88:2793–2802. https://doi.org/10.1890/07-0121.i

    CrossRef  Google Scholar

  50. Nalepa TF, Fanslow DL, Lang GA, Mabrey K, Rowe K (2014) Lake-wide benthic surveys in Lake Michigan in 1994-1995, 2005, and 2010: abundances of the amphipod Diporeia spp. and abundances and biomass of the mussels Dreissena polymorpha and Dreissena rostriformis bugensis. NOAA Technical Memorandum GLERL-164

    Google Scholar

  51. Kovalenko KE, Reavie ED, Barbiero RP, Burlakova LE, Karatayev AY, Rudstam LG, Watkins JM (2018) Patterns of long-term dynamics of aquatic communities and water quality parameters in the Corking Lakes: are they synchronized? J Great Lakes Res 44:660–669. https://doi.org/10.1016/j.jglr.2018.05.018

    CAS  CrossRef  Google Scholar

  52. Rogers MW, Bunnell DB, Madenjian CP, Warner DM (2014) Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008. Tin can J Fish Aquat Sci 71:1072–1086. https://doi.org/ten.1139/cjfas-2013-0514

    CrossRef  Google Scholar

  53. Lepak RF, Hoffman JC, Janssen SE, Krabbenhoft DP, Ogorek JM, DeWild JF, Tate MT, Babiarz CL, Yin R, Potato EW, Engstrom DR, Hurley JP (2019) Mercury source changes and food spider web shifts modify contamination signatures of predatory fish from Lake Michigan. Proc Natl Acad Sci U S A 116:23600–23608. https://doi.org/10.1073/pnas.1907484116

    CAS  CrossRef  Google Scholar

  54. Paterson K, Blitz SA, Arts MT, Drouillard KG, Haffner GD, Johnson TB, Lantry BF, Hebert CE, McGoldrick DJ, Backus SM, Fisk AT (2014) Ecological tracers reveal resource convergence among prey fish species in a large lake ecosystem. Freshw Biol 59:2150–2161. https://doi.org/10.1111/fwb.12418

    CAS  CrossRef  Google Scholar

  55. Lin P, Guo L (2016) Exercise invasive quagga mussels alter COii dynamics in the Laurentian Great Lakes? Sci Rep 6:39078. https://doi.org/10.1038/srep39078

    CAS  CrossRef  Google Scholar

  56. Currie WJS, Frank MM (2015) Multivariate analysis of the 40 yr project Quinte biogeochemistry dataset: water chemistry, physical characteristics, seston and climate. Canadian Manuscript Report of Fisheries and Aquatic Sciences 3125, Burlington, Canada

    Google Scholar

  57. Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Groovy Lakes. Limnol Oceanogr sixty:696–721. https://doi.org/x.1002/lno.10055

    CAS  CrossRef  Google Scholar

  58. Yu-Chun K, Adlerstein S, Rutherford E (2014) The relative impacts of nutrient loads and invasive species on a Great Lakes food web: an Ecopath with Ecosim analysis. J Great Lakes Res twoscore:35–52. https://doi.org/10.1016/j.jglr.2014.01.010

    CAS  CrossRef  Google Scholar

  59. De Stasio B, Schrimpf M, Cornwell B (2014) Phytoplankton communities in Greenish Bay, Lake Michigan after invasion by dreissenid mussels: increased dominance past blue-green alga. Diversity 6:681–704. https://doi.org/10.3390/d6040681

    CrossRef  Google Scholar

  60. Kimbrough KL, Johnson WE, Jacob AP, Lauenstein GG (2013) Contaminant concentrations in Dreissenid mussels from the Laurentian Swell Lakes. In: Nalepa TF, Schloesser DW (eds) Quagga and zebra mussels. CRC Printing, Boca Raton

    Google Scholar

  61. Larios Advert, Pulicharla R, Brar SK, Cledón Grand (2018) Filter feeders increment sedimentation of titanium dioxide: the instance of zebra mussels. Sci Total Environ 618:746–752. https://doi.org/10.1016/j.scitotenv.2017.08.150

    CAS  CrossRef  Google Scholar

  62. Macksasitorn Southward, Janssen J, Gray KA (2015) PCBs refocused: correlation of PCB concentrations in Green Bay legacy sediments with adjacent lithophilic, invasive biota. J Great Lakes Res 41:215–221. https://doi.org/x.1016/j.jglr.2014.12.021

    CAS  CrossRef  Google Scholar

  63. Lepak RF, Krabbenhoft DP, Ogorek JM, Tate MT, Bootsma HA, Hurley JP (2015) Influence of Cladophora-quagga mussel assemblages on nearshore methylmercury product in Lake Michigan. Environ Sci Technol 49:7606–7613. https://doi.org/10.1021/es506253v

    CAS  CrossRef  Google Scholar

  64. Dayton AI, Auer MT, Atkinson JF (2014) Cladophora, mass transfer and the nearshore phosphorus shunt. J Peachy Lakes Res 40:790–799. https://doi.org/10.1016/j.jglr.2014.05.010

    CAS  CrossRef  Google Scholar

  65. Olapade OA, Depas MM, Jensen ET, McLellan SL (2006) Microbial communities and fecal indicator leaner associated with Cladophora mats on beach sites forth Lake Michigan shores. Appl Environ Microbiol 72:1932–1938. https://doi.org/10.1128/AEM.72.3.1932-1938.2006

    CAS  CrossRef  Google Scholar

  66. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 every bit a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951. https://doi.org/10.1128/AEM.02993-x

    CAS  CrossRef  Google Scholar

  67. Winemiller KO (1990) Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr threescore:331–367. https://doi.org/10.2307/1943061

    CrossRef  Google Scholar

  68. Jude DJ, Reider RH, Smith GR (1992) Establishment of Gobiidae in the Dandy Lakes Bowl. Tin J Fish Aquat Sci 49:416–421. https://doi.org/ten.1139/f92-047

    CrossRef  Google Scholar

  69. Walsh MG, Dittman DE, O'Gorman R (2007) Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario. J Great Lakes Res 33:83–92. https://doi.org/10.3394/0380-1330(2007)33[83:OAFHOT]2.0.CO;2

    CrossRef  Google Scholar

  70. Vanderploeg HA, Nalepa TN, Jude DJ, Mills EL, Holeck KT, Liebig JR, Grigorovich IA, Ojaveer H (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Tin can J Fish Aquat Sci 59:1209–1228. https://doi.org/x.1139/f02-087

    CrossRef  Google Scholar

  71. Dopazo SN, Corkum LD, Mandrak NE (2008) Fish assemblages and environmental variables associated with gobiids in nearshore areas of the lower Great Lakes. J Great Lakes Res 34:450–460

    CrossRef  Google Scholar

  72. Kornis MS, Mercado-Silva N, Vander Zanden MJ (2012) Xx years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80:235–285. https://doi.org/10.1111/j.1095-8649.2011.03157.x

    CAS  CrossRef  Google Scholar

  73. Turschak BA, Bootsma HA (2015) Lake Michigan trophic structure every bit revealed by stable C and North isotopes. J Dandy Lakes Res 41:185–196. https://doi.org/10.1016/j.jglr.2015.04.004

    CrossRef  Google Scholar

  74. Mumby JA, Larocque SM, Johnson TB, Stewart TJ, Fitzsimons JD, Weidel BC, Walsh MG, Lantry JR, Yuille MJ, Fisk AT (2018) Nutrition and trophic niche space and overlap of Lake Ontario salmonid species using stable isotopes and stomach contents. J Smashing Lakes Res 44:1383–1392. https://doi.org/10.1016/j.jglr.2018.08.009

    CrossRef  Google Scholar

  75. Roseman EF, Schaeffer JS, Vivid Eastward, Fielder DG (2014) Angler-defenseless piscivore diets reflect fish community changes in Lake Huron. Trans Am Fish Soc 143:1419–1433. https://doi.org/10.1080/00028487.2014.945659

    CAS  CrossRef  Google Scholar

  76. Hares CJ, Jonas JL, Leonard JB (2015) Diet assay of burbot (Lota lota) from eastern Lake Michigan: 1996–2012. Hydrobiologia 757:89–99. https://doi.org/10.1007/s10750-015-2297-y

    CAS  CrossRef  Google Scholar

  77. Colborne SF, Rush SA, Paterson G, Johnson TB, Lantry BF, Fisk AT (2016) Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models. J Great Lakes Res 42:695–702. https://doi.org/10.1016/j.jglr.2016.03.010

    CrossRef  Google Scholar

  78. Jacobs GR, Bruestle EL, Hussey A, Gorsky D, Fisk AT (2017) Invasive species alter ontogenetic shifts in the trophic ecology of Lake Sturgeon (Acipenser fulvescens) in the Niagara River and Lake Ontario. Biol Invasions 19:1533–1546. https://doi.org/x.1007/s10530-017-1376-half dozen

    CrossRef  Google Scholar

  79. Wallace JS, Blersch DM (2015) Dynamic modeling predicts connected bioaccumulation of polybrominated diphenyl ethers (PBDEs) in smallmouth bass (Micropterus dolomiu) post stage-out due to invasive prey and shifts in predation. Environ Pollut 206:289–297. https://doi.org/10.1016/j.envpol.2015.07.023

    CAS  CrossRef  Google Scholar

  80. Hogan LS, Marschall Due east, Folt C, Stein RA (2007) How not-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. J Dandy Lakes Res 33:46–61. https://doi.org/x.3394/0380-1330(2007)33[46:HNSILE]two.0.CO;2

    CAS  CrossRef  Google Scholar

  81. Visha A, Gandhi N, Bhavsar SP, Arhonditsis GB (2018) Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: a Bayesian perspective. Environ Pollut 243:777–789. https://doi.org/10.1016/j.envpol.2018.07.070

    CAS  CrossRef  Google Scholar

  82. Schaeffer JS, Bowen A, Thomas Chiliad, French JRP, Curtis GL (2005) Invasion history, proliferation, and offshore diet of the round goby Neogobius melanostomus in western Lake Huron, USA. J Great Lakes Res 31:414–425. https://doi.org/10.1016/S0380-1330(05)70273-two

    CrossRef  Google Scholar

  83. Nalepa TF, Fanslow DL, Pothoven SA, Foley AJ, Lang GA (2007) Long-term trends in benthic macroinvertebrate populations in Lake Huron over the by 4 decades. J Not bad Lakes Res 33:421–436. https://doi.org/10.3394/0380-1330(2007)33[421:LTIBMP]2.0.CO;two

    CrossRef  Google Scholar

  84. Johnson TB, Bunnell DB, Knight CT (2005) A potential new energy pathway in Central Lake Erie: the circular goby connection. J Keen Lakes Res 31:238–251. https://doi.org/x.1016/S0380-1330(05)70317-eight

    CrossRef  Google Scholar

  85. Schmeltz D, Evers DC, Driscoll CT, Artz R, Cohen Thousand, Gay D, Haeuber R, Krabbenhoft DP, Mason R, Morris K, Wiener JG (2011) MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20:1713–1725. https://doi.org/10.1007/s10646-011-0756-4

    CAS  CrossRef  Google Scholar

  86. Risch MR, Kenski DM, Gay DA (2014) A Great Lakes atmospheric mercury monitoring network: evaluation and design. Atmos Environ 85:109–122. https://doi.org/10.1016/j.atmosenv.2013.11.050

    CAS  CrossRef  Google Scholar

  87. Sierszen ME, Morrice JA, Trebitz AS, Hoffman JC (2012) A review of selected ecosystem services provided by coastal wetlands of the Laurentian Smashing Lakes. Aquat Ecosyst Health xv:92–106. https://doi.org/10.1080/14634988.2011.624970

    CrossRef  Google Scholar

  88. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay One thousand (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. https://doi.org/10.1007/s10021-003-0161-9

    CAS  CrossRef  Google Scholar

  89. Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin Hour, Robarts RD, Bourbonniere RA, Warner BG (2006) Northward American prairie wetlands are important non-forested land-based carbon storage sites. Sci Full Environ 361:179–188. https://doi.org/10.1016/j.scitotenv.2005.06.007

    CAS  CrossRef  Google Scholar

  90. Fennessy MS, Wardrop DH, Moon JB, Wilson Due south, Craft C (2018) Soil carbon sequestration in freshwater wetlands varies across a slope of ecological status and by ecoregion. Ecol Eng 114:129–136. https://doi.org/10.1016/j.ecoleng.2017.09.013

    CrossRef  Google Scholar

  91. Zedler JB, Kercher Southward (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Institute Sci 23:431–452. https://doi.org/10.1080/07352680490514673

    CrossRef  Google Scholar

  92. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen bicycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/scientific discipline.1136674

    CAS  CrossRef  Google Scholar

  93. Martina J, Currie WS, Goldberg DE, Elgersma KE (2016) Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere seven:e01459. https://doi.org/10.1002/ec2.1459

    CrossRef  Google Scholar

  94. Currie WS, Goldberg DE, Martina J, Wildova R, Farrer Eastward, Elgersma KJ (2014) Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model. Ecol Model 282:69–82. https://doi.org/ten.1016/j.ecolmodel.2014.01.010

    CAS  CrossRef  Google Scholar

  95. Martina JP, Hamilton SK, Turetsky MR, Phillippo CJ (2014) Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant and Soil 385:107–123. https://doi.org/10.1007/s11104-014-2211-9

    CAS  CrossRef  Google Scholar

  96. Frevola DM, Hovick SM (2019) The independent furnishings of food enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific. Oecologia 191:447–460. https://doi.org/ten.1007/s00442-019-04493-y

    CrossRef  Google Scholar

  97. Carson BD, Lishawa SC, Tuchman NC, Monks AM, Lawrence BA, Albert DA (2018) Harvesting invasive plants to reduce nutrient loads and produce bioenergy: an cess of Dandy Lakes coastal wetlands. Ecosphere 9:e02320. https://doi.org/10.1002/ecs2.2320

    CrossRef  Google Scholar

  98. Grace JB, Harrison JS (1986) The biology of Canadian weeds. 73. Typha latifolia 50., Typha angustifolia 50. and Typha x glauca Godr. Can J Plant Sci 66:361–379. https://doi.org/ten.4141/cjps86-051

    CrossRef  Google Scholar

  99. Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755. https://doi.org/10.1007/BF03161781

    CrossRef  Google Scholar

  100. Ciotir C, Kirk H, Row JR, Freeland JR (2013) Intercontinental dispersal of Typha angustifolia and T. latifolia betwixt Europe and Due north America has implications for Typha invasions. Biol Invasions xv:1377–1390. https://doi.org/10.1007/s10530-012-0377-8

    CrossRef  Google Scholar

  101. Freeland J, Ciotir C, Kirk H (2013) Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biol Invasions 15:2651–2665. https://doi.org/10.1007/s10530-013-0481-4

    CrossRef  Google Scholar

  102. Lishawa SC, Jankowski K, Geddes P, Larkin DJ, Monks AM, Tuchman NC (2014) Denitrification in a Laurentian Great Lakes littoral wetland invaded by hybrid cattail (Typha 10 glauca). Aquat Sci 76:483–495. https://doi.org/ten.1007/s00027-014-0348-5

    CAS  CrossRef  Google Scholar

  103. Lishawa SC, Carson BD, Brandt JS, Tallant JM, Reo NJ, Albert DA, Monks AM, Lautenbach JM, Clark East (2017) Mechanical harvesting finer controls young Typha spp. invasion and unmanned aerial vehicle data enhances mail treatment monitoring. Front Institute Sci 8:619. https://doi.org/10.3389/fpls.2017.00619

    CrossRef  Google Scholar

  104. Schrank AJ, Lishawa SC (2019) Invasive cattail reduces fish variety and abundance in the emergent marsh of a Great Lakes coastal wetland. J Neat Lakes Res 45:1251–1259. https://doi.org/10.1016/j.jglr.2019.09.013

    CrossRef  Google Scholar

  105. Monks AM, Lishawa SC, Wellons KC, Albert DA, Mudrzynski B, Wilcox DA (2019) European frogbit (Hydrocharis morsus-ranae) invasion facilitated by non-native cattails (Typha) in the Laurentian Bang-up Lakes. J Bang-up Lakes Res 45:912–920. https://doi.org/x.1016/j.jglr.2019.07.005

    CrossRef  Google Scholar

  106. Meyerson LA, Saltonstall K, Chambers RM (2009) Phragmites australis in eastern Northward America: a historical and ecological perspective. In: Silliman BR, Grosholz E, Bertness Physician (eds) Table salt marshes nether global siege. University of California Press, Berkeley

    Google Scholar

  107. Meyerson LA, Cronin JT (2013) Evidence for multiple introductions of Phragmites australis to N America: detection of a new not-native haplotype. Biol Invasions xv:2605–2608. https://doi.org/10.1007/s10530-013-0491-2

    CrossRef  Google Scholar

  108. Bourgeau-Chavez LL, Kowalski KP, Mazur MLC, Scarborough KA, Powell RB, Brooks CN, Huberty B, Jenkins LK, Banda EC, Galbraith DM, Laubach ZM, Riordan K (2013) Mapping invasive Phragmites australis in the littoral Dandy Lakes with ALOS PALSAR satellite imagery for conclusion support. J Great Lakes Res 39:65–77. https://doi.org/10.1016/j.jglr.2012.11.001

    CrossRef  Google Scholar

  109. Carlson Mazur ML, Kowalski KP, Galbraith D (2014) Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone. Aquat Invasions ix:1–ix. https://doi.org/ten.3391/ai.2014.9.i.01

    CrossRef  Google Scholar

  110. Bickerton H (2015) Extent of European mutual reed (Phragmites australis ssp. australis) as a threat to species at take a chance in Ontario. Study prepared for natural heritage department Ontario Ministry of Natural Resource and Forestry. Peterborough, ON

    Google Scholar

  111. Lawrence BA, Lishawa SC, Hurst N, Castillo BT, Tuchman NC (2017) Wetland invasion by Typha × glauca increases soil methane emissions. Aquat Bot 137:80–87. https://doi.org/ten.1016/j.aquabot.2016.xi.012

    CAS  CrossRef  Google Scholar

  112. Yuckin Due south, Rooney R (2019) Significant increase in nutrient stocks following Phragmites australis invasion of freshwater meadow marsh but non of cattail marsh. Front Environ Sci vii:112. https://doi.org/x.3389/fenvs.2019.00112

    CrossRef  Google Scholar

  113. Goldberg DE, Martina JP, Elgersma KJ, Currie WS (2017) Constitute size and competitive dynamics along nutrient gradients. Am Nat 190:229–243. https://doi.org/10.1086/692438

    CrossRef  Google Scholar

  114. Farrer EC, Goldberg DE (2014) Mechanisms and reversibility of the effects of hybrid cattail on a Great Lakes marsh. Aquat Botany 116:35–43. https://doi.org/10.1016/j.aquabot.2014.01.002

    CrossRef  Google Scholar

  115. Geddes P, Grancharova T, Kelly JJ, Treering D, Tuchman NC (2014) Effects of invasive Typha × glauca on wetland nutrient pools, denitrification, and bacterial communities are influenced by time since invasion. Aquat Ecol 48:247–258. https://doi.org/ten.1007/s10452-014-9480-5

    CAS  CrossRef  Google Scholar

  116. Duke ST, Francoeur SN, Judd KE (2015) Effects of Phragmites australis invasion on carbon dynamics in a freshwater. Wetlands 35:311–321. https://doi.org/10.1007/s13157-014-0619-10

    CrossRef  Google Scholar

  117. Volesky LA, Iqbal S, Kelly JJ, Geddes P (2018) Relationships of native and exotic strains of Phragmites australis to wetland ecosystem backdrop. Wetlands 38:577–589. https://doi.org/x.1007/s13157-018-1001-1

    CrossRef  Google Scholar

  118. Price AL, Fant JB, Larkin DJ (2014) Ecology of native vs. introduced Phragmites australis (mutual reed) in Chicago-expanse wetlands. Wetlands 34:369–377. https://doi.org/ten.1007/s13157-013-0504-z

    CrossRef  Google Scholar

  119. Elgersma KJ, Martina JP, Goldberg DE, Currie WS (2017) Effectiveness of cattail (Typha spp.) management techniques depends on exogenous nitrogen inputs. Elem Sci Anth 5:19–31. https://doi.org/x.1525/elementa.147

    CrossRef  Google Scholar

  120. Tho BT, Sorrell BK, Lambertini C, Eller F, Brix H (2016) Phragmites australis: how do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allotment and gas exchange? Biol Invasions 18:2563–2576. https://doi.org/x.1007/s10530-016-1158-vi

    CrossRef  Google Scholar

  121. Myhre Grand, Shindell D, Bréon F-Grand, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climatic change 2013: the physical scientific discipline basis. Contribution of Working Group I to the 5th assessment report of the intergovernmental panel on climatic change. Cambridge University Press, Cambridge

    Google Scholar

  122. Bhavsar SP, Jackson DA, Hayton A, Reiner EJ, Chen T, Bodnar J (2007) Are PCB levels in fish from the Canadian Dandy Lakes all the same declining? J Great Lakes Res 33:592–605. https://doi.org/10.3394/0380-1330(2007)33[592:APLIFF]2.0.CO;2

    CAS  CrossRef  Google Scholar

  123. Herbst SJ, Roth BM, Hayes DB, Stockwell JD (2016) Walleye foraging ecology in an interconnected chain of lakes influenced by nonnative species. Trans Am Fish Soc 145:319–333. https://doi.org/10.1080/00028487.2015.1121924

    CrossRef  Google Scholar

  124. Drouillard KG, Lafontaine J, Grgicak-Mannion A, McPhedran K, SzaliÅ„ska EE (2020) Spatial and temporal trends of metal and organic contaminants in the Huron-Erie corridor 1999–2014. In: Crossman J, Weisener C (eds) Contaminants of the Swell Lakes. The handbook of environmental chemistry, vol 30. Springer, Berlin

    Google Scholar

  125. Pagnucco KS, Maynard GA, Fera SA, Yan ND, Nalepa TF, Ricciardi A (2015) The future of species invasions in the Great Lakes-St. Lawrence River basin. J Great Lakes Res 41:96–107. https://doi.org/10.1016/j.jglr.2014.11.004

    CrossRef  Google Scholar

  126. Zhou Z, Guo 50, Minor EC (2016) Characterization of majority and chromophoric dissolved organic matter in the Laurentian Cracking Lakes. J Great Lakes Res 42:789–801. https://doi.org/10.1016/j.jglr.2016.04.006

    CAS  CrossRef  Google Scholar

Download references

Author information

Affiliations

Corresponding author

Correspondence to Emma M. DeRoy .

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this affiliate

DeRoy, E.M., MacIsaac, H.J. (2020). Impacts of Invasive Species in the Laurentian Great Lakes. In: Crossman, J., Weisener, C. (eds) Contaminants of the Swell Lakes. The Handbook of Ecology Chemistry, vol 101. Springer, Cham. https://doi.org/x.1007/698_2020_593

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/698_2020_593

  • Published:

  • Publisher Name: Springer, Cham

  • Impress ISBN: 978-3-030-57873-two

  • Online ISBN: 978-3-030-57874-9

  • eBook Packages: Chemistry and Materials Science Chemistry and Material Science (R0)

hardeyhatild.blogspot.com

Source: https://link.springer.com/chapter/10.1007/698_2020_593