Review of Invasive Species in the Great Lakes
Abstract
The Laurentian Great Lakes are subject field to numerous anthropogenic perturbations, among which invasive species are notable. Sequential invasions of non-indigenous species have had profound effects within the basin's ecosystems. Invasive species have altered ecosystem functioning, trophic dynamics, and nutrient cycling. They take similarly been implicated in affecting contaminant dynamics, including their transport and bioaccumulation. This work is a regional synthesis of aquatic invasive species-induced changes to ecosystem functioning in the Slap-up Lakes and their tributaries. We have highlighted several species whose impacts on legacy contaminant, nutrient, and food spider web dynamics in these lakes have been particularly potent. Profiled species included filter feeders [zebra mussels (Dreissena polymorpha) and quagga mussels (D. rostriformis bugensis)], a fish [circular goby (Neogobius melanostomus)], and two invasive plants [mutual reed (Phragmites australis) and cattail (Typha spp.)]. Collectively, these species showcase invasive species' ecosystem-wide effects. The Peachy Lakes have a long invasion history. Despite extensive research efforts, complex food web interactions and synergies between invasive species and concomitant stressors can obscure causality. These interactions underscore the need for long-term, spatially resolved studies to understand invasive species' direct and indirect effects on invaded ecosystems.
Keywords
- Contaminant
- Food web
- Touch
- Invasive species
- Laurentian Great Lakes
References
-
Allan JD, McIntyre Lead, Smith SDP, Halpern BS, Boyer GL, Buchsbaum A, Burton Jr GA, Campbell LM, Chadderton WL, Ciborowski JJH, Doran PJ, Eder T, Infante DM, Johnson LB, Joseph CA, Marino AL, Prusevich A, Read JG, Rose JB, Rutherford ES, Sowa SP, Steinman Advertising (2013) Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc Natl Acad Sci U Southward A 110:372–377. https://doi.org/10.1073/pnas.1213841110
-
Smith SDP, Bunnell DB, Burton Jr GA, Ciborowski JJH, Davidson AD, Dickinson CE, Eaton LA, Esselman PC, Evans MA, Kashian DR, Manning NF, McIntyre PB, Nalepa TF, Pérez-Fuentetaja A, Steinman AD, Uzarski DG, Allan JD (2019) Evidence for interactions among ecology stressors in the Laurentian Great Lakes. Ecol Indic 101:203–211. https://doi.org/10.1016/j.ecolind.2019.01.010
-
Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282. https://doi.org/10.1890/13-0183.one
-
Environment and Climate Change Canada (ECCC), U.S. Environmental Protection Agency (EPA) (2017) Land of the Great Lakes 2017 Technical Written report. Cat No. En161-3/1E-PDF. EPA 905-R-17-001
-
Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Slap-up Lakes by Ponto–Caspian species. Trends Ecol Evol 15:62–65. https://doi.org/ten.1016/S0169-5347(99)01745-0
-
Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Defined Distrib 12:425–433. https://doi.org/10.1111/j.1366-9516.2006.00262.ten
-
Rothlisberger JD, Finnoff DC, Cooke RM, Lodge DM (2012) Ship-borne nonindigenous species diminish Great Lakes ecosystem services. Ecosystems 15:462–476. https://doi.org/10.1007/s1002
-
Drake JM, Lodge DM (2007) Charge per unit of species introductions in the nifty lakes via ships' ballast water and sediments. Can J Fish Aquat Sci 64:530–538
-
Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Slap-up Lakes? Tin can J Fish Aquat Sci 58:2513–2525. https://doi.org/x.1139/f01-178
-
Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. https://doi.org/ten.1023/A:1010086329619
-
Ricciardi A, MacIsaac HJ (2011) Impacts of biological invasions on freshwater ecosystems. In: Richardson DM (ed) 50 years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Due west Sussex
-
MacIsaac HJ, Johansson ML (2017) Higher colonization pressure increases the risk of sustaining invasion by invasive non-ethnic species. Aquat Ecosyst Wellness twenty:378–383. https://doi.org/ten.1080/14634988.2017.1393299
-
Sturtevant RA, Stonemason DM, Rutherford ES, Elgin A, Lower E, Martinez F (2019) Contempo history of nonindigenous species in the Laurentian Great Lakes; an update to Mills et al., 1993 (25 years later). J Peachy Lakes Res 45:1011–1035. https://doi.org/x.1016/j.jglr.2019.09.002
-
Madenjian CP, Bunnell DB, Warner DM, Pothoven SA, Fahnenstiel GL, Nalepa TF, Vanderploeg HA, Tsehaye I, Claramunt RM, Clark Jr RD (2015) Changes in the Lake Michigan food web following dreissenid mussel invasions: a synthesis. J Nifty Lakes Res 41(Suppl iii):217–231. https://doi.org/10.1016/j.jglr.2015.08.009
-
Pérez-Fuentetaja A, Mackintosh SA, Zimmerman LR, Clapsadl Doc, Alaee Yard, Aga DS (2015) Trophic transfer of flame retardants (PBDEs) in the nutrient web of Lake Erie. Can J Fish Aquat Sci 72:1886–1896. https://doi.org/10.1139/cjfas-2015-0088
-
Crane DP, Einhouse DW (2016) Changes in growth and diet of smallmouth bass following invasion of Lake Erie past the round goby. J Keen Lakes Res 42:405–412. https://doi.org/10.1016/j.jglr.2015.12.005
-
Turschak BA, Bunnell D, Czesny South, Höök TO, Janssen J, Warner D, Bootsma HA (2014) Nearshore energy subsidies support Lake Michigan fishes and invertebrates post-obit major changes in food web construction. Ecology 95:1243–1252. https://doi.org/ten.1890/13-0329.1
-
Walsh JR, Carpenter SR, Vander Zanden MJ (2016) Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc Natl Acad Sci U Due south A 113:201600366. https://doi.org/x.1073/pnas.1600366113
-
Ives JT, McMeans BC, McCann KS, Fisk AT, Johnson TB, Bunnell DB, Frank KT, Muir AM (2019) Food web construction and ecosystem role in the Laurentian Slap-up Lakes – toward a conceptual model. Freshw Biol 64:i–23. https://doi.org/ten.1111/fwb.13203
-
IJC (1972) Great Lakes water quality agreement with annexes and texts and terms of reference, between the United States and Canada, signed at Ottawa, April 15,1972. International Articulation Commission, Windsor, ON
-
Maccoux MJ, Dove A, Backus SM, Dolan DM (2016) Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country and tributary. J Bang-up Lakes Res 42:1151–1165. https://doi.org/x.1016/j.jglr.2016.08.005
-
Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ, Dolan DM, Brenden TO, Briland R, Gorman OT, He JX, Johengen TH, Lantry BF, Lesht BM, Nalepa TF, Riley SC, Riseng CM, Treska TJ, Tsehaye I, Walsh MG, Warner DM, Weidel BC (2014) Changing ecosystem dynamics in the Laurentian Great Lakes: lesser-up and top-downwards regulation. Bioscience 64:26–39. https://doi.org/10.1093/biosci/bit001
-
Gandhi North, Tang RW, Bhavsar SP, Arhonditsis GB (2014) Fish mercury levels appear to be increasing lately: a report from twoscore years of monitoring in the province of Ontario, Canada. Environ Sci Technol 48:5404–5414. https://doi.org/10.1021/es403651x
-
Blukacz-Richards EA, Visha A, Graham ML, McGoldrick DL, de Solla SR, Moore DJ, Arhonditsis GB (2017) Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes. Chemosphere 172:476–487. https://doi.org/10.1016/j.chemosphere.2016.12.148
-
Zhou C, Cohen Dr., Crimmins BA, Zhou H, Johnson TA, Hopke PK, Holsen TM (2017) Mercury temporal trends in meridian predator fish of the Laurentian Bang-up Lakes from 2004 to 2015: are concentrations still decreasing? Environ Sci Technol 51:7386–7394. https://doi.org/ten.1021/acs.est.7b00982
-
Visha A, Gandhi North, Bhavsar SP, Arhonditsis GB (2016) Guiding fish consumption advisories for Lake Ontario: a Bayesian hierarchical approach. J Great Lakes Res 42:70–82. https://doi.org/x.1016/j.jglr.2015.11.005
-
Omara M, Crimmins BS, Back RC, Hopke PK, Chang FC, Holsen TM (2015) Mercury biomagnification and contemporary food web dynamics in lakes superior and Huron. J Great Lakes Res 41:473–483. https://doi.org/10.1016/j.jglr.2015.02.005
-
Dove A, L'Italien Southward, Gilroy D (2009) Great Lakes surveillance program field methods manual. Water quality monitoring and surveillance. Environs Canada, Burlington, Ontario, Canada. Report No. WQMS09-001
-
McGoldrick DJ, Clark MG, Keir MJ, Backus SM, Malecki MM (2010) Canada'southward national aquatic biological specimen bank and database. J Great Lakes Res 36:393–398. https://doi.org/10.1016/j.jglr.2010.02.011
-
Gewurtz SB, Backus SM, Bhavsar SP, McGoldrick DJ, de Solla SR, Murphy EW (2011) Contaminant biomonitoring programs in the Neat Lakes region: review of approaches and critical factors. Environ Rev 19:162e184. https://doi.org/ten.1139/a11-005
-
Cornwell ER, Goyette JO, Sorichetti RJ, Allan DJ, Kashian DR, Sibley PK, Taylor WD, Play tricks CG (2015) Biological and chemic contaminants as drivers of change in the Keen Lakes–St. Lawrence river basin. J Smashing Lakes Res 41:119–130. https://doi.org/10.1016/j.jglr.2014.11.003
-
Dolan DM, Chapra SC (2012) Great Lakes full phosphorus revisited: 1. Loading analysis and update (1994–2008). J Bully Lakes Res 38:730–740. https://doi.org/10.1016/j.jglr.2012.10.001
-
Mckindles One thousand, Frenken T, McKay RM, Bullerjahn GS (2020) Binational efforts addressing cyanobacterial harmful algal blooms in the Swell Lakes. In: Crossman J, Weisener C (eds) Contaminants of the Great Lakes. The handbook of environmental chemistry, vol 30. Springer, Berlin
-
Carlton JT (2008) The zebra mussel Dreissena polymorpha establish in North America in 1986 and 1987. J Great Lakes Res 34:770–773. https://doi.org/10.3394/0380-1330-34.4.770
-
May B, Marsden JE (1992) Genetic identification and implications of another invasive species of dreissenid mussel in the Slap-up Lakes. Tin can J Fish Aquat Sci 49:1501–1506. https://doi.org/10.1139/f92-166
-
Smith SDP, McIntyre Atomic number 82, Halpern BS, Cooke RM, Marino AL, Boyer GL, Buchsbaum A, Burton Jr GA, Campbell LM, Ciborowski JJH, Doran PJ, Infante DM, Johnson LB, Read JG, Rose JB, Rutherford ES, Steinman Advertisement, Allan JD (2015) Rating impacts in a multi-stressor earth: a quantitative assessment of l stressors affecting the Swell Lakes. Ecol Appl 25:717–728. https://doi.org/x.1890/14-0366.i
-
Hecky RE, Smith RE, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a event of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293. https://doi.org/10.1139/F04-065
-
Engevold PM, Immature EB, Sandgren CD, Berges JA (2015) Pressure from top and bottom: lower food web responses to changes in nutrient cycling and invasive species in western Lake Michigan. J Great Lakes Res 41(Supplement 3):86–94. https://doi.org/x.1016/j.jglr.2015.04.015
-
Mosley CM, Bootsma HA (2015) Phosphorus cycling and grazing by profunda quagga mussels in Lake Michigan. J Keen Lakes Res 41:38–48. https://doi.org/10.1016/j.jglr.2015.07.007
-
Rowe MD, Anderson EJ, Vanderploeg HA, Pothoven SA, Elgin AK, Wang J, Yousef F (2017) Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: a biophysical modeling study. Limnol Oceanogr 62:2629–2649. https://doi.org/x.1002/lno.10595
-
Barbiero RP, Lesht BM, Warren GJ, Rudstam LG, Watkins JM, Reavie ED, Kovalenko KE, Karatayev AY (2018) A comparative examination of recent changes in nutrients and lower food spider web construction in Lake Michigan and Lake Huron. J Great Lakes Res 44:573–589. https://doi.org/10.1016/j.jglr.2018.05.012
-
Ozersky T, Evans Practice, Ginn BK (2015) Invasive mussels modify the cycling, storage and distribution of nutrients and carbon in a large lake. Freshw Biol 60:827–843. https://doi.org/10.1111/fwb.12537
-
Stadig MH, Collingsworth PD, Lesht BM, Höök TO (2019) Spatially heterogeneous trends in nearshore and offshore chlorophyll a concentrations in lakes Michigan and Huron (1998–2013). Freshwater Biol. https://doi.org/10.1111/fwb.13430
-
Rowe MD, Obenour DR, Nalepa TF, Vanderploeg HA, Yousef F, Kerfoot WC (2015) Mapping the spatial distribution of the biomass and filter-feeding event of invasive dreissenid mussels on the wintertime-spring phytoplankton blossom in Lake Michigan. Freshw Biol 60:2270–2285. https://doi.org/ten.1111/fwb.12653
-
Shimoda Y, Watson SB, Palmer ME, Koops MA, Mugalingam South, Morley A, Arhonditsis GB (2016) Delineation of the function of nutrient variability and dreissenids (Mollusca, Bivalvia) on phytoplankton dynamics in the Bay of Quinte, Ontario, Canada. Harmful Algae 55:121–136. https://doi.org/10.1016/j.hal.2016.02.005
-
Yousef F, Kerfoot WC, Shuchman R, Fahnenstiel Thou (2014) Bio-optical properties and primary production of Lake Michigan: insights from 13-years of SeaWiFS imagery. J Great Lakes Res 40:317–324. https://doi.org/10.1016/j.jglr.2014.02.018
-
Ransibrahmanakul V, Pittmam SJ, Pirhalla DE, Sheridan SC, Cameron CL, Barnes BB, Hu C, Shein One thousand (2018) Linking atmospheric condition patterns, h2o quality and invasive mussel distributions in the development and application of a water clarity alphabetize for the Slap-up Lakes. In: 2018 IEEE international geoscience and remote sensing symposium, Feria Valencia, Spain, 22–27 July 2018
-
Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ (2014) Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J Dandy Lakes Res 40:502–517. https://doi.org/x.1016/j.jglr.2014.05.001
-
Schmidt SN, Olden JD, Solomon CT, Vander Zanden MJ (2007) Quantitative approaches to the analysis of stable isotope food web information. Ecology 88:2793–2802. https://doi.org/10.1890/07-0121.i
-
Nalepa TF, Fanslow DL, Lang GA, Mabrey K, Rowe K (2014) Lake-wide benthic surveys in Lake Michigan in 1994-1995, 2005, and 2010: abundances of the amphipod Diporeia spp. and abundances and biomass of the mussels Dreissena polymorpha and Dreissena rostriformis bugensis. NOAA Technical Memorandum GLERL-164
-
Kovalenko KE, Reavie ED, Barbiero RP, Burlakova LE, Karatayev AY, Rudstam LG, Watkins JM (2018) Patterns of long-term dynamics of aquatic communities and water quality parameters in the Corking Lakes: are they synchronized? J Great Lakes Res 44:660–669. https://doi.org/10.1016/j.jglr.2018.05.018
-
Rogers MW, Bunnell DB, Madenjian CP, Warner DM (2014) Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008. Tin can J Fish Aquat Sci 71:1072–1086. https://doi.org/ten.1139/cjfas-2013-0514
-
Lepak RF, Hoffman JC, Janssen SE, Krabbenhoft DP, Ogorek JM, DeWild JF, Tate MT, Babiarz CL, Yin R, Potato EW, Engstrom DR, Hurley JP (2019) Mercury source changes and food spider web shifts modify contamination signatures of predatory fish from Lake Michigan. Proc Natl Acad Sci U S A 116:23600–23608. https://doi.org/10.1073/pnas.1907484116
-
Paterson K, Blitz SA, Arts MT, Drouillard KG, Haffner GD, Johnson TB, Lantry BF, Hebert CE, McGoldrick DJ, Backus SM, Fisk AT (2014) Ecological tracers reveal resource convergence among prey fish species in a large lake ecosystem. Freshw Biol 59:2150–2161. https://doi.org/10.1111/fwb.12418
-
Lin P, Guo L (2016) Exercise invasive quagga mussels alter COii dynamics in the Laurentian Great Lakes? Sci Rep 6:39078. https://doi.org/10.1038/srep39078
-
Currie WJS, Frank MM (2015) Multivariate analysis of the 40 yr project Quinte biogeochemistry dataset: water chemistry, physical characteristics, seston and climate. Canadian Manuscript Report of Fisheries and Aquatic Sciences 3125, Burlington, Canada
-
Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Groovy Lakes. Limnol Oceanogr sixty:696–721. https://doi.org/x.1002/lno.10055
-
Yu-Chun K, Adlerstein S, Rutherford E (2014) The relative impacts of nutrient loads and invasive species on a Great Lakes food web: an Ecopath with Ecosim analysis. J Great Lakes Res twoscore:35–52. https://doi.org/10.1016/j.jglr.2014.01.010
-
De Stasio B, Schrimpf M, Cornwell B (2014) Phytoplankton communities in Greenish Bay, Lake Michigan after invasion by dreissenid mussels: increased dominance past blue-green alga. Diversity 6:681–704. https://doi.org/10.3390/d6040681
-
Kimbrough KL, Johnson WE, Jacob AP, Lauenstein GG (2013) Contaminant concentrations in Dreissenid mussels from the Laurentian Swell Lakes. In: Nalepa TF, Schloesser DW (eds) Quagga and zebra mussels. CRC Printing, Boca Raton
-
Larios Advert, Pulicharla R, Brar SK, Cledón Grand (2018) Filter feeders increment sedimentation of titanium dioxide: the instance of zebra mussels. Sci Total Environ 618:746–752. https://doi.org/10.1016/j.scitotenv.2017.08.150
-
Macksasitorn Southward, Janssen J, Gray KA (2015) PCBs refocused: correlation of PCB concentrations in Green Bay legacy sediments with adjacent lithophilic, invasive biota. J Great Lakes Res 41:215–221. https://doi.org/x.1016/j.jglr.2014.12.021
-
Lepak RF, Krabbenhoft DP, Ogorek JM, Tate MT, Bootsma HA, Hurley JP (2015) Influence of Cladophora-quagga mussel assemblages on nearshore methylmercury product in Lake Michigan. Environ Sci Technol 49:7606–7613. https://doi.org/10.1021/es506253v
-
Dayton AI, Auer MT, Atkinson JF (2014) Cladophora, mass transfer and the nearshore phosphorus shunt. J Peachy Lakes Res 40:790–799. https://doi.org/10.1016/j.jglr.2014.05.010
-
Olapade OA, Depas MM, Jensen ET, McLellan SL (2006) Microbial communities and fecal indicator leaner associated with Cladophora mats on beach sites forth Lake Michigan shores. Appl Environ Microbiol 72:1932–1938. https://doi.org/10.1128/AEM.72.3.1932-1938.2006
-
Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 every bit a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951. https://doi.org/10.1128/AEM.02993-x
-
Winemiller KO (1990) Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr threescore:331–367. https://doi.org/10.2307/1943061
-
Jude DJ, Reider RH, Smith GR (1992) Establishment of Gobiidae in the Dandy Lakes Bowl. Tin J Fish Aquat Sci 49:416–421. https://doi.org/ten.1139/f92-047
-
Walsh MG, Dittman DE, O'Gorman R (2007) Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario. J Great Lakes Res 33:83–92. https://doi.org/10.3394/0380-1330(2007)33[83:OAFHOT]2.0.CO;2
-
Vanderploeg HA, Nalepa TN, Jude DJ, Mills EL, Holeck KT, Liebig JR, Grigorovich IA, Ojaveer H (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Tin can J Fish Aquat Sci 59:1209–1228. https://doi.org/x.1139/f02-087
-
Dopazo SN, Corkum LD, Mandrak NE (2008) Fish assemblages and environmental variables associated with gobiids in nearshore areas of the lower Great Lakes. J Great Lakes Res 34:450–460
-
Kornis MS, Mercado-Silva N, Vander Zanden MJ (2012) Xx years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80:235–285. https://doi.org/10.1111/j.1095-8649.2011.03157.x
-
Turschak BA, Bootsma HA (2015) Lake Michigan trophic structure every bit revealed by stable C and North isotopes. J Dandy Lakes Res 41:185–196. https://doi.org/10.1016/j.jglr.2015.04.004
-
Mumby JA, Larocque SM, Johnson TB, Stewart TJ, Fitzsimons JD, Weidel BC, Walsh MG, Lantry JR, Yuille MJ, Fisk AT (2018) Nutrition and trophic niche space and overlap of Lake Ontario salmonid species using stable isotopes and stomach contents. J Smashing Lakes Res 44:1383–1392. https://doi.org/10.1016/j.jglr.2018.08.009
-
Roseman EF, Schaeffer JS, Vivid Eastward, Fielder DG (2014) Angler-defenseless piscivore diets reflect fish community changes in Lake Huron. Trans Am Fish Soc 143:1419–1433. https://doi.org/10.1080/00028487.2014.945659
-
Hares CJ, Jonas JL, Leonard JB (2015) Diet assay of burbot (Lota lota) from eastern Lake Michigan: 1996–2012. Hydrobiologia 757:89–99. https://doi.org/10.1007/s10750-015-2297-y
-
Colborne SF, Rush SA, Paterson G, Johnson TB, Lantry BF, Fisk AT (2016) Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models. J Great Lakes Res 42:695–702. https://doi.org/10.1016/j.jglr.2016.03.010
-
Jacobs GR, Bruestle EL, Hussey A, Gorsky D, Fisk AT (2017) Invasive species alter ontogenetic shifts in the trophic ecology of Lake Sturgeon (Acipenser fulvescens) in the Niagara River and Lake Ontario. Biol Invasions 19:1533–1546. https://doi.org/x.1007/s10530-017-1376-half dozen
-
Wallace JS, Blersch DM (2015) Dynamic modeling predicts connected bioaccumulation of polybrominated diphenyl ethers (PBDEs) in smallmouth bass (Micropterus dolomiu) post stage-out due to invasive prey and shifts in predation. Environ Pollut 206:289–297. https://doi.org/10.1016/j.envpol.2015.07.023
-
Hogan LS, Marschall Due east, Folt C, Stein RA (2007) How not-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. J Dandy Lakes Res 33:46–61. https://doi.org/x.3394/0380-1330(2007)33[46:HNSILE]two.0.CO;2
-
Visha A, Gandhi N, Bhavsar SP, Arhonditsis GB (2018) Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: a Bayesian perspective. Environ Pollut 243:777–789. https://doi.org/10.1016/j.envpol.2018.07.070
-
Schaeffer JS, Bowen A, Thomas Chiliad, French JRP, Curtis GL (2005) Invasion history, proliferation, and offshore diet of the round goby Neogobius melanostomus in western Lake Huron, USA. J Great Lakes Res 31:414–425. https://doi.org/10.1016/S0380-1330(05)70273-two
-
Nalepa TF, Fanslow DL, Pothoven SA, Foley AJ, Lang GA (2007) Long-term trends in benthic macroinvertebrate populations in Lake Huron over the by 4 decades. J Not bad Lakes Res 33:421–436. https://doi.org/10.3394/0380-1330(2007)33[421:LTIBMP]2.0.CO;two
-
Johnson TB, Bunnell DB, Knight CT (2005) A potential new energy pathway in Central Lake Erie: the circular goby connection. J Keen Lakes Res 31:238–251. https://doi.org/x.1016/S0380-1330(05)70317-eight
-
Schmeltz D, Evers DC, Driscoll CT, Artz R, Cohen Thousand, Gay D, Haeuber R, Krabbenhoft DP, Mason R, Morris K, Wiener JG (2011) MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20:1713–1725. https://doi.org/10.1007/s10646-011-0756-4
-
Risch MR, Kenski DM, Gay DA (2014) A Great Lakes atmospheric mercury monitoring network: evaluation and design. Atmos Environ 85:109–122. https://doi.org/10.1016/j.atmosenv.2013.11.050
-
Sierszen ME, Morrice JA, Trebitz AS, Hoffman JC (2012) A review of selected ecosystem services provided by coastal wetlands of the Laurentian Smashing Lakes. Aquat Ecosyst Health xv:92–106. https://doi.org/10.1080/14634988.2011.624970
-
McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay One thousand (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. https://doi.org/10.1007/s10021-003-0161-9
-
Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin Hour, Robarts RD, Bourbonniere RA, Warner BG (2006) Northward American prairie wetlands are important non-forested land-based carbon storage sites. Sci Full Environ 361:179–188. https://doi.org/10.1016/j.scitotenv.2005.06.007
-
Fennessy MS, Wardrop DH, Moon JB, Wilson Due south, Craft C (2018) Soil carbon sequestration in freshwater wetlands varies across a slope of ecological status and by ecoregion. Ecol Eng 114:129–136. https://doi.org/10.1016/j.ecoleng.2017.09.013
-
Zedler JB, Kercher Southward (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Institute Sci 23:431–452. https://doi.org/10.1080/07352680490514673
-
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen bicycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/scientific discipline.1136674
-
Martina J, Currie WS, Goldberg DE, Elgersma KE (2016) Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere seven:e01459. https://doi.org/10.1002/ec2.1459
-
Currie WS, Goldberg DE, Martina J, Wildova R, Farrer Eastward, Elgersma KJ (2014) Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model. Ecol Model 282:69–82. https://doi.org/ten.1016/j.ecolmodel.2014.01.010
-
Martina JP, Hamilton SK, Turetsky MR, Phillippo CJ (2014) Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant and Soil 385:107–123. https://doi.org/10.1007/s11104-014-2211-9
-
Frevola DM, Hovick SM (2019) The independent furnishings of food enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific. Oecologia 191:447–460. https://doi.org/ten.1007/s00442-019-04493-y
-
Carson BD, Lishawa SC, Tuchman NC, Monks AM, Lawrence BA, Albert DA (2018) Harvesting invasive plants to reduce nutrient loads and produce bioenergy: an cess of Dandy Lakes coastal wetlands. Ecosphere 9:e02320. https://doi.org/10.1002/ecs2.2320
-
Grace JB, Harrison JS (1986) The biology of Canadian weeds. 73. Typha latifolia 50., Typha angustifolia 50. and Typha x glauca Godr. Can J Plant Sci 66:361–379. https://doi.org/ten.4141/cjps86-051
-
Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755. https://doi.org/10.1007/BF03161781
-
Ciotir C, Kirk H, Row JR, Freeland JR (2013) Intercontinental dispersal of Typha angustifolia and T. latifolia betwixt Europe and Due north America has implications for Typha invasions. Biol Invasions xv:1377–1390. https://doi.org/10.1007/s10530-012-0377-8
-
Freeland J, Ciotir C, Kirk H (2013) Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biol Invasions 15:2651–2665. https://doi.org/10.1007/s10530-013-0481-4
-
Lishawa SC, Jankowski K, Geddes P, Larkin DJ, Monks AM, Tuchman NC (2014) Denitrification in a Laurentian Great Lakes littoral wetland invaded by hybrid cattail (Typha 10 glauca). Aquat Sci 76:483–495. https://doi.org/ten.1007/s00027-014-0348-5
-
Lishawa SC, Carson BD, Brandt JS, Tallant JM, Reo NJ, Albert DA, Monks AM, Lautenbach JM, Clark East (2017) Mechanical harvesting finer controls young Typha spp. invasion and unmanned aerial vehicle data enhances mail treatment monitoring. Front Institute Sci 8:619. https://doi.org/10.3389/fpls.2017.00619
-
Schrank AJ, Lishawa SC (2019) Invasive cattail reduces fish variety and abundance in the emergent marsh of a Great Lakes coastal wetland. J Neat Lakes Res 45:1251–1259. https://doi.org/10.1016/j.jglr.2019.09.013
-
Monks AM, Lishawa SC, Wellons KC, Albert DA, Mudrzynski B, Wilcox DA (2019) European frogbit (Hydrocharis morsus-ranae) invasion facilitated by non-native cattails (Typha) in the Laurentian Bang-up Lakes. J Bang-up Lakes Res 45:912–920. https://doi.org/x.1016/j.jglr.2019.07.005
-
Meyerson LA, Saltonstall K, Chambers RM (2009) Phragmites australis in eastern Northward America: a historical and ecological perspective. In: Silliman BR, Grosholz E, Bertness Physician (eds) Table salt marshes nether global siege. University of California Press, Berkeley
-
Meyerson LA, Cronin JT (2013) Evidence for multiple introductions of Phragmites australis to N America: detection of a new not-native haplotype. Biol Invasions xv:2605–2608. https://doi.org/10.1007/s10530-013-0491-2
-
Bourgeau-Chavez LL, Kowalski KP, Mazur MLC, Scarborough KA, Powell RB, Brooks CN, Huberty B, Jenkins LK, Banda EC, Galbraith DM, Laubach ZM, Riordan K (2013) Mapping invasive Phragmites australis in the littoral Dandy Lakes with ALOS PALSAR satellite imagery for conclusion support. J Great Lakes Res 39:65–77. https://doi.org/10.1016/j.jglr.2012.11.001
-
Carlson Mazur ML, Kowalski KP, Galbraith D (2014) Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone. Aquat Invasions ix:1–ix. https://doi.org/ten.3391/ai.2014.9.i.01
-
Bickerton H (2015) Extent of European mutual reed (Phragmites australis ssp. australis) as a threat to species at take a chance in Ontario. Study prepared for natural heritage department Ontario Ministry of Natural Resource and Forestry. Peterborough, ON
-
Lawrence BA, Lishawa SC, Hurst N, Castillo BT, Tuchman NC (2017) Wetland invasion by Typha × glauca increases soil methane emissions. Aquat Bot 137:80–87. https://doi.org/ten.1016/j.aquabot.2016.xi.012
-
Yuckin Due south, Rooney R (2019) Significant increase in nutrient stocks following Phragmites australis invasion of freshwater meadow marsh but non of cattail marsh. Front Environ Sci vii:112. https://doi.org/x.3389/fenvs.2019.00112
-
Goldberg DE, Martina JP, Elgersma KJ, Currie WS (2017) Constitute size and competitive dynamics along nutrient gradients. Am Nat 190:229–243. https://doi.org/10.1086/692438
-
Farrer EC, Goldberg DE (2014) Mechanisms and reversibility of the effects of hybrid cattail on a Great Lakes marsh. Aquat Botany 116:35–43. https://doi.org/10.1016/j.aquabot.2014.01.002
-
Geddes P, Grancharova T, Kelly JJ, Treering D, Tuchman NC (2014) Effects of invasive Typha × glauca on wetland nutrient pools, denitrification, and bacterial communities are influenced by time since invasion. Aquat Ecol 48:247–258. https://doi.org/ten.1007/s10452-014-9480-5
-
Duke ST, Francoeur SN, Judd KE (2015) Effects of Phragmites australis invasion on carbon dynamics in a freshwater. Wetlands 35:311–321. https://doi.org/10.1007/s13157-014-0619-10
-
Volesky LA, Iqbal S, Kelly JJ, Geddes P (2018) Relationships of native and exotic strains of Phragmites australis to wetland ecosystem backdrop. Wetlands 38:577–589. https://doi.org/x.1007/s13157-018-1001-1
-
Price AL, Fant JB, Larkin DJ (2014) Ecology of native vs. introduced Phragmites australis (mutual reed) in Chicago-expanse wetlands. Wetlands 34:369–377. https://doi.org/ten.1007/s13157-013-0504-z
-
Elgersma KJ, Martina JP, Goldberg DE, Currie WS (2017) Effectiveness of cattail (Typha spp.) management techniques depends on exogenous nitrogen inputs. Elem Sci Anth 5:19–31. https://doi.org/x.1525/elementa.147
-
Tho BT, Sorrell BK, Lambertini C, Eller F, Brix H (2016) Phragmites australis: how do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allotment and gas exchange? Biol Invasions 18:2563–2576. https://doi.org/x.1007/s10530-016-1158-vi
-
Myhre Grand, Shindell D, Bréon F-Grand, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climatic change 2013: the physical scientific discipline basis. Contribution of Working Group I to the 5th assessment report of the intergovernmental panel on climatic change. Cambridge University Press, Cambridge
-
Bhavsar SP, Jackson DA, Hayton A, Reiner EJ, Chen T, Bodnar J (2007) Are PCB levels in fish from the Canadian Dandy Lakes all the same declining? J Great Lakes Res 33:592–605. https://doi.org/10.3394/0380-1330(2007)33[592:APLIFF]2.0.CO;2
-
Herbst SJ, Roth BM, Hayes DB, Stockwell JD (2016) Walleye foraging ecology in an interconnected chain of lakes influenced by nonnative species. Trans Am Fish Soc 145:319–333. https://doi.org/10.1080/00028487.2015.1121924
-
Drouillard KG, Lafontaine J, Grgicak-Mannion A, McPhedran K, SzaliÅ„ska EE (2020) Spatial and temporal trends of metal and organic contaminants in the Huron-Erie corridor 1999–2014. In: Crossman J, Weisener C (eds) Contaminants of the Swell Lakes. The handbook of environmental chemistry, vol 30. Springer, Berlin
-
Pagnucco KS, Maynard GA, Fera SA, Yan ND, Nalepa TF, Ricciardi A (2015) The future of species invasions in the Great Lakes-St. Lawrence River basin. J Great Lakes Res 41:96–107. https://doi.org/10.1016/j.jglr.2014.11.004
-
Zhou Z, Guo 50, Minor EC (2016) Characterization of majority and chromophoric dissolved organic matter in the Laurentian Cracking Lakes. J Great Lakes Res 42:789–801. https://doi.org/10.1016/j.jglr.2016.04.006
Author information
Affiliations
Corresponding author
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this affiliate
DeRoy, E.M., MacIsaac, H.J. (2020). Impacts of Invasive Species in the Laurentian Great Lakes. In: Crossman, J., Weisener, C. (eds) Contaminants of the Swell Lakes. The Handbook of Ecology Chemistry, vol 101. Springer, Cham. https://doi.org/x.1007/698_2020_593
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/698_2020_593
-
Published:
-
Publisher Name: Springer, Cham
-
Impress ISBN: 978-3-030-57873-two
-
Online ISBN: 978-3-030-57874-9
-
eBook Packages: Chemistry and Materials Science Chemistry and Material Science (R0)
Source: https://link.springer.com/chapter/10.1007/698_2020_593